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AB ST RACT

An analytical investigation of laminar free convection

from a semi-infinite vertical plate is undertaken with the

following special conditions imposed. The plate is main-

tained at a constant temperature greater than that of the

ambient fluid. At an arbitrary distance above the leading

edge a constant rate of blowing or suction is initiated

extending uniformly along the remainder of the plate. The

solution was obtained using the method of matched asymptotic

expansions whereby an inner series described the velocity

and temperature profiles near the discontinuity in the

vicinity of surface and an outer series approximated the

behavior at greater distances from the plate. The inner

series was also used to determine the heat transfer charac-

teristics at the surface of the plate. The ambient fluid

was assumed to be air with a Prandtl number of 0.72.
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normal to the plate defined in

equation (5a)

Z 1 z , etc. Universal functions used in solving
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for the inner and outer expansions

defined in equation (16)

Sparrow and Cess parameter defined

in equation (48)
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,p , etc. Coefficient functions for 4 in the

outer series expansion defined in

equation ( 34)

Nondimensional temperature distri-
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I. INTRODUCTION

The study of free convection has been the subject of

ongoing research over the past century both from an analyti-

cal and experimental point of view. An excellent overview

of the progress made in this area can be found in Ede [1].

Two outstanding expositions of the fundamentals of heat

transfer by the mechanism of free convection are presented

by Gebhart [2] and Moore [3].

The technique of solving boundary layer problems by

employing similarity analysis is discussed in general by

Hansen [4] and specific applications of the method are pre-

sented by Yang [5].

The problem discussed in this paper is that of an analyti-

cal investigation of the effects of blowing and suction

applied at a specified distance above the leading edge of a

uniformly heated semi-infinite vertical plate on the heat

transfer characteristics at the surface of the plate.

An early study of the effects of mass transfer on free

convection was conducted by Eichhorn [6] who showed that

similar solutions are possible for blowing or suction rate

distributions which vary as the distance from the leading

edge of the plate raised to a power related to the variation

in surface temperature.
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Since the prescribed surface temperature itself varied as

a power of the distance from the leading edge, this proved to

be a somewhat restricted case of limited physical application.

The case of a uniformly heated plate with constant blowing or

suction along the entire extent of the surface was succinctly

treated by Sparrow and Cess [71 who extended their analysis

to include independent power law variations of both surface

temperature and mass transfer. Their analysis which was based

on an asymptotic series expansion of the stream function and

temperature distribution evaluated the first order effects of

blowing and suction on free convection. An extension of this

work to include possible variations in the fluid properties

was conducted by Parikh, Kays and Bershader [8] who employed

a numerical finite difference scheme to solve the resulting

equations. Their numerical predictions were in close agree-

ment with interferometric data obtained through their own

experiments. The results of these authors and especially

those reported by Sparrow and Cess have been of great value

in affording a comparison with results obtained in the

present study. A comprehensive investigation of the effects

of suction and blowing on heat transfer and wall skin fric-

tion which included regions on the plate at large distances

from the leading edge was conducted by Merkin [9]. In that

analysis a step-by-step numerical solution of the boundary

layer equations begins at the leading edge and proceeds

systematically up the plate until the asymptotic velocity

14



and temeperature profiles are obtained to whatever accuracy

is required.

There have been several additional studies in the area

of free convection past a vertical plate with various condi-

tions of wall temperature or heat flux and imposed variations

in transpiration at the surface of the plate. An analysis

which transformed the laminar boundary layer equations re-

sulting from arbitrary distributions in both wall temperature

and blowing into ordinary differential equations with variable

coefficients and constant boundary conditions was presented

by Vedhanayagan, Altenkirch, and Eichhorn [10]. In the area

of unsteady free convection where either the plate surface

temperature or transpiration rate varies with time there have

been at least four notable studies during the past twenty

years. Nanda and Sharma [11] undertook analytical inves-

tigations and determined that similarity solutions were

possible for the following two cases: surface temperature

varying as some power of time and suction velocity varying

as time to the minus one-half power; and the second case

where surface temperature is an exponential or periodic

function of time and the suction velocity is constant. The

effects of mass diffusion on the unsteady free convective

flow past a simi-infinite porous plate with constant suction

were studied through mathematical analysis by Soundalgekar

and Wavre [12]. With the assumption that the plate temperature

oscillated in time about a constant mean, approximate

15



solutions were derived for the mean flow, transient flow, the

amplitude and phase of the skin friction and the rate of heat

transfer. The effects of the nondemensional parameters Grashof

number, Prandtl number, Eckert number and Schmidt number were

also reported. The most general unsteady situation where both

wall temperature and suction velocity are periodic functions

of time was considered by Lal [13]. All of the previous

studies cited have neglected the effects of viscous dissipation;

however, this effect is not insignificant when the natural

convection flow field is very large or the flow occurs in the

presence of extremely low temperatures or very high gravity

fields. The combined effect of viscous dissipation with the

suction velocity and plate temperature oscillating at the

same frequency on free convection past a vertical plate was

analyzed by Soundalgekar and Pop [14). In their study expres-

sions for the mean velocity, transient velocity, transient

temperature profiles, amplitude and phase of skin friction

and the rate of heat transfer were derived and the results

Ij compared to those reported for the case of constant suction

velocity.

A review of the literature in the field of free convection

on a vertical plate clearly indicates a desire on the part

of researchers to investigate perturbations of the thermal

and momentum boundary layers resulting from the introduction

of temperature or velocity discontinuities along the surface

of the plate and their ultimate effect on skin friction and

16



heat transfer at the wall. The specific nature of the dis-

continuity will determine the manner in which the perturbation

effects propagate through the boundary-layers and; therefore,

will often indicate a preferred method of analytical solution.

Although there are several possible mathematical techniques

available to researchers in this field, two fundamentally

different approaches predeminate, each with numerous variations.

An example of the finite difference method of solution to the

boundary-layer equations resulting from a discontinuity in the

surface wall temperature can be found in Na [lS1and Meena and

Nath [16)]. This technique has gained in acceptance with the

advent of larger and faster digital computers. The other

major technique involves the expansion of both the stream

function and temperature profile in an asymptotic series.

The original proponent of this method was Goldstein who pre-

sented the details of the asymptotic series technique,

commonly known as the Goldstein series, in [17]. After re-

ducing the set of governing boundary-layer equations by the

4 introduction of a stream function such that:

u ~and v ax

two new variables are introduced which are of the following

general form: I

1) In the streamwise direction: x xn

2) In the direction normal to the plate: n = yx -/

A series is then formed in powers of C for the stream function

and temperature distribution with undetermined coefficient

17



functions f respectively which depend only on n. The

problem is then finally reduced to one of determining the

coefficient functions; the solution of a fifth order set of

linear coupled ordinary differential equations for each pair

of coefficients subject to the appropriate boundary conditions.

This technique is especially powerful when employed to inves-

tigate conditions at or near the surface of the plate. In

order to examine the laminar free convection wake above a

heated vertical plate Yang [18] successfully employed this

technique to obtain detailed velocity and temperature profiles

in the immediate vicinity of the trailing edge and then

expanded these results to the rest of the wake by an integral

solution. Another example of this technique is found in

Kelleher [19] where a step discontinuity in the surface

temperature imposed at a finite distance above the leading

edge of the plate caused a perturbation of both the thermal

and momentum boundary-layers. An inner expansion of the

Goldstein type was employed to obtain the behavior of heat

transfer near the surface of the plate and an outer asymptotic

series expansion was constructed to determine the velocity

and temperature profiles at greater distances from the plate.

A similar approach is employed to analytically investigate

the present problem where a discontinuity in the velocity

boundary condition is propagated through the momentum and

thermal boundary-layers. Laminar flow is assumed as are

constant transport properties of the ambient fluid. The

18



primary aim of the study is the determination of any en-

hancement or degradation of the heat transfer rate at the

surface of the plate compared to the same plate without

blowing or suction over the entire length.

19
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11. ANALYSIS

A. COORDINATE SYSTEM

The problem considered in this paper is that of laminar

free convective flow from a uniformly heated semi-infinite

vertical plate with leading edge oriented downward in a

standard gravitational field. A constant rate of blowing or

suction is applied at the surface beginning at an arbitrary

distance, L, above the leading edge. A rectangular cartesian

coordinate system with origin as indicated in Figure 1 was

employed in the analysis. As is indicated throughout the

paper various transformations of the basic coordinates are

invoked to facilitate the solution of the problem.

B. GOVERNING EQUATIONS

The analysis is based on the standard Boussinesq free

convection approximation which assumes that only density va-

riations giving rise to buoyant forces are considered with

the effects of viscous dissipation neglected. With these

standard assumptions the two dimensional equations of con-

tinuity, momentum, and energy boundary-layer form are:

3Vi (0

u 2- + v 2- V v - go(Ir - T(2)

20
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Figure 1: Basic Coordinate System
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U- + (-3)

where T is the constant ambient fluid temperature. These

equations must also satisfy the following physical boundary

conditions:

At =O: u O 0

v =vw , X>O (3a)

V= 0 , -L<x<0

and as y u 0

T=T

The non-zero normal velocity boundary condition at x = 0 and

y = 0 introduces a discontinuity into the boundary-layer equa-

tions which has a primary direct effect on the formation of

the momentum boundary-layer and a secondary influence on the

development of the thermal boundary-layer. A positive value

for v w will represent the blowing of fluid away from the wall

and a negative value for vw will represent the suction of fluid

through the plate.

In order to facilitate the analysis, the variables in

equations (l)-(3) are non-dimensionalized according to the

following transformations:

(4a)

Y=j~ (4b)

22
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aL
u -(4c)

v =Z- (4d)
V

T%
(4e)

Tw -T.

where L is the distance above the leading edge where suc-

tion or blowing commences, and Tw is the constant wall

temperature. The equations are further simplified through

the introduction of the conventional stream function ip and

by stretching y, u, and v as follows:

y* = y( Gr) (Sa)

u* = u(4Gr)-  = _- (5b)y*

v* = v(64Gr)-  = (5c)ax

where the Grashof number, Gr, is evaluated with respect to

L, the length scale associated with the discontinuity. It

should be noted that this length scale is not the conven-
tional one used in free convection problems where distance

from the leading edge is normally used to evaluate Gr. Now

after substituting equations (5) into equations (1)-(3), the

continuity equation is eliminated and the momentum and energy

equations reduce to the following:

4- aa2 4 - a3* + (6)
ay* ax -3Y Ty3

23

- . . . .



4 3 0 -4 a De 10 a 2 0 (7)
ay* ax ax ay' -a )1*2

The non-zero normal velocity component imposed at the surface

of the plate perturbs the governing equations (6) and (7)

precluding the existence of a similarity solution. There-

fore, an approximate solution to these equations will be

obtained by means of inner and outer asymptotic series ex-

pansions for both i and 0. The inner expansions will approxi-

mate local behavior near the surface of the plate in the

vicinity of the discontinuity, and the outer expansions will

model velocity and temperature profiles at greater distances

from the plate.

C. BOUNDARY AND INITIAL CONDITIONS

The nondimensional form of the governing equations given

in (6) and (7) must satisfy the original physical boundary

conditions as specified in (3a) which reduce to the following

conditions in terms of the stream function t and temperature

distribution 0:
At y* 0: u* = =0

-V-* = ±e* , x> 0

v* = -4 = 0, -L<x<O (8a)ax

As y*~~ u* =0

0 =0

24



where c* is related to the physical blowing or suction rate,

vw, by the following:

-v L
* - (64Gr) -  (3b)

Since this problem involves a perturbation of both the

momentum and thermal boundary-layers which began developing

at the leading edge, the initial conditions at the origin of

the discontinuity, i.e., x = 0, must match these free con-

vection profiles. For a semi-infinite vertical plate main-

tained at a constant temperature the following ordinary

differential equations describe unperturbed free convection

behavior:

F''' + 3FF" - 2F' 2 + H = 0 (9a)

1 H" + 3FH' 0 (9b)
PFr

with the following boundary conditions:

At r =  0: F(0) F'(0) ; H(0) = 1

As r+-: F'(o) = 0; H() = 0 (10)

where F is the similarity stream function and H is the

dimensionless temperature distribution and primes indicate

derivatives with respect to the free convection similarity

variable nf defined as follows:

f Y (Gr* (11)

(T+L)

25



where Gr* is evaluated at x+L according to the free convection

length scale which has its origin at the leading edge. It

should be noted that all references or comparisons to the

unperturbed free convection problem employ this translated

length scale, whereas the length scale for the perturbed

problem is based on L with origin at x = 0. At x =0 equation

(11) reduces to ff y*. The solution to the equations (9)

are well known; however, an excellent summary of solutions

for this and other more general cases can be found in Yang

Since the initial length of the plate is unperturbed, the

velocity and temperature profiles at x =0 will be given by

the following:

u = (4Gr) , F?(y*) (12a)

0 = H(y*) (12b)

Therefore, the initial velocity and temperature profiles

originating at x = 0 must match those obtained from equations

(12). The details of expressing F and H in a form which will

permit this matching condition to be mathematically formulated

are presented in Appendix A.

26j



III. METHOD OF SOLUTION

A. REDUCTION OF THE GOVERNING EQUATIONS

The nondimensional forms of the governing equations for

the problem under consideration are:

2- - 4 ax ay-2 ay- + 0 (6)

4 - 4 1P 3- 6 - 1 a2e (7)
3y* ax_ ax 3-- P 3*

In order to apply the Goldstein series method of solution to

these equations suitable expansions of ' and 0 must be con-

structed of the following form:

1
F' E*( /¢) a + ,3E C[Ekfk(n)] (13)

and 0 1 + Rd[Ek gk(n) ]  (14)
an b

where x; n = 02y*xb; the 's are possibly functions ofwhere ;th

e*; and the a, b, c, d are constants to be determined. The

following conditions must be satisfied which impose certain

restrictions on the 's and exponent constants:

1) The u velocities from the free convection region

(i<O) and from the perturbed stream function, i.e.,

y-- must match at x = 0.

2) The temperature profiles must match at x = 0.

3) The highest order derivative of the coefficient func-

tions must appear in the zeroth order expansions which

27



result upon substitution of equations (13) and (14)

into equations (6) and (7)

4) The exponent constants in the expansions referred to

in 3) above must be integers.

The details of applying the conditions outlined above to

determine the unknown parameters are presented in Appendix B

along with the boundary conditions which must be satisfied

by the coefficient functions fk and gk"

Using the results of Appendix B equations (13) and (14)

are transformed into the following:

= + E 2 [Ek ( 15a)

and = 1 + [Ekgk] (lSb)

3 1/3 3 -1/3ywhere E = (Tx) and ,j = (Tx)- 3y*= y*/E (16)

The momentum and energy equations (6) and (7) are transformed

into:

[(k + l)Ckfi][ckfk - [(k + 2)Ekfk] Lkfk]

- 4E:*[kfk] = [Ckfj,] + + 2[ kgk] (17)

k [2k,]k kk ]and [(k + l)k gkl[kf] [(k + 2) kgf]

- 4E,[kg] = __{[1 kg] (18)

where the repeated index k indicates the standard Einstein

summation. By the process of equating coefficients of like

powers of the following ordinary differential equations

involving the coefficient functions are obtained.

28



Momentum Equation:

0th order: f''' + 2f f" - f, 2 
= 0

i0 0 6

1st order: f''' + 2f f" - 3f'f' + 3f"f =-4e*f' 1 (19)
1 8 1 0 1 0

2nd order: f''' + 2f f" - 4f'f' + 4f"f 2f' 2 - 3f f"
2 0 2 0 2 02 1 1 1

- 4e*fI - g
1 0

Energy Equation:

1
0th order: g + 2f0g 0 - fg= 0

st order: 1 " + 2f g' - 2f'g, + 3g'f - fl =-4E* '
Pr o gL g ' ao 0

1 g~f;(20)
2nd o rder : gj: + 2 f g - 3f g 2  + 4g o' - g of (22

og 0

3g'1f ,  - 4 *gI

From Appendix B the following boundary conditions must be

satisfied by the zeroth order momentum and energy equations:

At n 0: f (0) = f'(0) = go(o) = 0

As n-o: 2. =a g -= brl2 T1 1

where a = F"(0) and b H'(0).
2 1

The solutions of the zeroth order equations are now straight-

forward and yield the following:

f a0 2 (21a)

and = b (21b)

B. DETERMINATION OF THE HIGHER ORDER COEFFICIENT FUNCTIONS

The first and higher order coefficient functions fk) and

gk for the stream function and temperature distribution inner

expansions are obtained by solving the sets of coupled fifth

29



order ordinary differential equations (19) and (20). These

equations were obtained by equating like powers of E in the

momentum and energy expansion defined in equations (17) and

(18). The presence of e* in the inhomogeneous parts of the

differential equations introduces another independent para-

meter which significantly complicates the numerical procedure

employed in their solution. To eliminate this problem and

isolate the effects of E* the coefficient functions can be

redefined in terms of universal functions which depend only

on the Prandtl number. The revised forms of fk and gk appear

in equations (22), presented below.

f =Y + F*'Y

= Z + *Z1

=Y + *Y2 1 + E 2 y 2 (22)
fl 20 21 22g2= Z 20+ e*Z 21+ C:*2Z 2

where the Y , Z , etc. are universal functions of n depend-
10 10

ing only on the Prandtl number. Since the first and higher

order equations of (19) and (20) are linear, the principle

of superposition applies and the equations of (22) can be

substituted into (17) and (18) and separate like power of

c* and obtain the following equations.

The first order momentum equation becomes:

M I[Y 0 ] - (23a)

and M [Y ] = - 4f", (23b)

where M is the linear differential operator defined by:

M =y + 2f Y" - 3f Y' + 3f"Y (23c)
1 1 0 1 0 1 0' 1
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The first order energy equation becomes:

E [Z ] = 0 (24a)
1 1o

and E [Z 1 - 4Z' (24b)
1 11 00

where E is the linear differential operator defined by:

1E 1Z" + 2f Z' 1 2fIZ + 3ZI Y - Z Y' 2c

Pr 1 0 10 1 00 1 00 1(4c

The second order momentum equation becomes:

2 [Y 2Y 2 - 3y y" Z ; (25a)
2 20 1 0 1 0 1 0 0 0

M [y ] = 4y' y' - 3y " - 3y y" - 4Y" ; (25b)
2 21 10 11 10 11 11 10 10

and M [Y ] = 2Y' 2 - 3Y Y"' - 4Y" , (25c)
2 22 11 11 11 11

where M is the linear differential operator defined by:
2

M = Y''' + 2f Y" - 4f'Y' + 4f'Y (25d)
2 2 0 2 0 2 0 2

The second order energy equation becomes:

E [Z ] = 2Y' Z - 3Y Z' ; (26a)
2 20 10 10 10 10

E [Z ] = 2Y' Z + 2Y' Z - 3Y Z' - 3Y Z'
2 21 10 11 11 10 10 11 11 10

- 4Z' ;(26b)-4Z'
10

and E [Z ]=2Y' Z - 3Y Z' 4Z' (26c)
2 2 2 1 1 1 1 1 1 1 1 1 1

where E is the linear differential operator defined by:
2

E = 1 Z" + 2f Z' - 3f'Z + 4Z' Y - Z Y' (26d)
2 Pr 2 0 2 0 2 2 2 00 2

The following boundary conditions must be satisfied by

equations (23)-(26):

At =0: Y = Y = Y =Y =Y =0;
10 11. 20 21 22

Y' = Y = = Y' = 0 ; (27)
10 11 20 21 22

and Z = Z = Z Z Z 0;
10 11 20 21 22

As n- : Y1io - ,y 0
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2Y -H (0) ,y' O
3 22

n3  6 21 22

z
1 O Z 0; (28)
2 21

and Z
2. 0, Z 0 0, Z -*0
3 21 22

which follow directly from the coefficient function boundary

conditions given in equations (B-33), (B-35) and B-36).

Although they were not used in the present analysis, the

third order universal function equations are presented in

Appendix C.

C. CONSTRUCTION OF THE OUTER SERIES EXPANSIONS

The inner series developed in the preceding section is

useful only in approximating local behavior at the surface in

the vicinity of the discontinuity. In order to describe the

temperature and velocity profiles at greater distances from

the plate another series is required which will satisfy the

asymptotic boundary conditions and also match the inner series

at some intermediate distance from the surface. According

to the method of Goldstein [17] the outer series expansions

for the stream function and temperature distribution should

be of the following form:

i p(Y*) + Ep (Y) + _ E2-p(y,) + (Y*) (29)
0 12! 2 3!

and

o (Y*) + E (Y*) + E2e (Y*) + 3(Y*) (30)
0 12! 231
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Since as -0 the original initial conditions must be satisfied,

the following equalities must hold; thus defining the zeroth

order coefficients:

0 (y*) = F(y*)
0

and (31)

0 (y*) = H(y*)
0

where F and H are the free convection similarity functions for

the stream function and temperature distribution, respectively.

This condition is merely a mathematical restatement of the phy-

sical condition which requires that the temperature and velocity

profiles at the discontinuity, = 0, match those generated by

the free convection process in the region between the leading

edge and the discontinuity.

Now the asymptotic outer series froms (29) and (30) are

substituted into the governing equations (6) and (7). Once again

through the process of collecting terms which are coefficients

of like powers of E, the following set of linear ordinary dif-

ferential equations is obtained from the momentum equation:

' ' -'PI" -o (32a)
0 1 0 1

I , + 2 _ t I, + " = 0 (32b)
0 2 1 1 1 2 2

+ 2 i2p 2 - - (32c)
2 0 3 1 2'22.1 2 1 2 -221 00

and from the energy equation the following set of algebraic

equations:.,

'e - 6 ' =0( (33a)
0 1 1 0

'e + 1,e -1p -1p e, = 0 (33b)
0 2 1 1 1 1 2 0
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2-2e + 2e + e 2 2 1 2 (33c)

The details of the solution of equations (32) and (33) can be

found in Appendix D and the results are summarized below:

-=0
1

C (34)

2 2a o
2 D

6 p - 2y*,p + 2
3 0 0 T£- a

2

e =0
1

C
e = e*. O'o (35)

2

D
3 a (2i - 2y*)6'
3 T 0

2

With these coefficient functions determined, velocity and

temperature profiles for large y* can be generated according

to the following expansions:

D y D4 a 2( 3 6 )

and 1( 2 2y*) F" (*)) 3

CD
u = H(y*) + ---- (y 2 + ( - 2y*)H(y*) 3  (37)6 2a

2 2

D. NUMERICAL SOLUTION OF UNIVERSAL EQUATIONS

The universal equations (23)-(26) with boundary conditions

(27) and (28) were solved numerically with an IBM 3033 series

digital computer. Double precision machine arithmetic was

used for all computations. A least squares correction method
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developed by Nachsteim and Swigert [20) was used as shooting

point routine to determine the unknown starting values for

each set of fifth order two point boundary value equations.

A standard fourth order Runge-Kutta initial value integration

routine was employed to tabulate values for the free convec-

tion functions F, F', F", H and H'; the zeroth order inner

series coefficient functions fo, fo, f", go and go; and the

higher order universal functions Y , Y , Y , etc. These10 11 20

tabulated values were then used to generate the inner and

outer velocity and temperature profiles as well as the local

Nusselt number at the surface of the plate.
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IV. RESULTS

A. PRESENTATION OF RESULTS

1. Velocity and Temperature Profiles

a. Inner Series Profiles

The inner series expansions for velocity and

temperature were computed form the tabulated values of the

universal functions which were obtained form the numerical

solution of the fifth order ordinary differential equations

defined by equations (23) through (25). The velocity profiles

were obtained for specified values of c* the blowing or suction

parameter according to the following equation:

u* = [f' .+ (Y' + y, )E , + (y, + F*y, + *,2y, )E2] (38)
0 10 11 20 21 22

where the f', Y' ,Y' , etc., are functions of n In order
0 10 11

to facilitate comparison and matching of the inner and outer

profiles the nondimensional velocity u* was plotted as a func-

tion of y* where the relationship between y* and n is: y*=.n.

Numerous sets of profiles were generated for analysis and

comparison; however, only the profiles corresponding to the

following parameters are presented in this paper:

1) Blowing and suction parameter, e*, of magni-

tudes ±0.05 and ±0.25 where positive values cor-

respond to suction and negative values to blowing.

2) Streamwise nondimensional parameter, E, corres-

ponding to x/L ratios of .25, .50, and 1.0.
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The plots of u* versus y* for these parameters are presented

in Figures 2-13 and for ease of comparison both inner and outer

profiles are included on the same plot.

The temperature profiles generated by the inner

series expansions were obtained from the following equation:

e = 1 g[g + (Z 1+ *Z )+ (Z + * Z + E, 2Z )C2]
0 10 11 20 21 22

(39)

where the g, ,Z , etc are functions of n; however, as

was the case with the velocity profiles, e was plotted as a

function of y* with y* = 'n. The same parameters were used

in plotting 0 versus y* and the outer profiles were included

for comparison. These plots appear in Figures 14-25.

b. Outer Series Profiles

The outer series expansions which were constructed

in the preceding chapter approximated the behavior of the ve-

locity and temperature distributions at greater distances from

the plate. The outer velocity profiles are given by equation

(36) which is written below for convenience:

C
u* = F' *) I [ a + F *)] +

2 ~ 1 D23 F'(y*) + 1 Zy *)F1(y*)I 3  (36)

where F' and F" are the first and second derivatives of the

free convection stream function evaluated at the location of

the discontinuity, x = 0. They were numerically calculated

for values of the free convection similarity variable which
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is identically equal to y* at x = 0. The constant a =i (0)
2 -

and the constants C and D are computed numerically from
1 2

equations (D-16) and (D-17)respectively. The outer velocity

profiles corresponding to the same e* and C parameters as were

specified for the inner profiles are shown in Figures 2 through

13.

The outer expansion which defines the temperature

profile valid for large values of y* was given in equation (37)

and is repeated below:

C *y* I1D
e = H(y*) + HIy) 2 + 6(-2 - 2ya- *)HI(y (37)

2 2

where the constants C , D , and a , are defined as before, and,
1 2 2

the H and H' are the free convection temperature distribution

and its derivative evaluated at x = 0 where y* is the free

convection similarity variable. Once again the plots of e

versus y* for the same parameters as for the inner profiles,

are presented in Figures 14 through 25.

2. Heat Transfer Characteristics at the Surface

The standard method of characterising the heat transfer

at the surface of a heated plate is to calculate the local

Nusselt number at the point of interest. In this particular

problem the Nusselt number at any location above the disconti-

nuity, x>0, is given by the following:

Nu= L (40)
-8y y= o
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which reduces to the following form when the appropriate sub-

stitutions are made for T and y in terms of nondimensional

variables:

Nu Gr (0) + (Z' (0) + £*Z1 (0))4 0 10 11

+ (z' (0) + E*z' (0) + E*2z' (0))r2] (41)
20 21 22

where the universal functions Z' , Z' , etc. were numerically
10 11

evaluated at n = 0. The heat transfer data is presented in

graphical form using the following nondimensional parameter

Nu

which was plotted as a function of for the following values

of the suction and blowing parameter:

E* = ±O.o5 and ±0.25.

The results are presented in Figures 26-29.

B. DISCUSSION OF RESULTS

1. The Matching Condition

a. The End-Point of Numerical Integration.

The end-point of numerical integration is the

valua supplied to the Nachsteim and Swigert starting value

routine at which it attempts to satisfy the boundary conditions

at n =. The choice of this point has an obvious direct in-

fluence on the starting values, f"(0) and g'(O), and also on
k k

the outer series constants C , C , D , D and D defined
i0 11 20 21 22

in (C-16) and (C-17) and which were numerically evaluated at
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the value of n chosen as the end-point. A summary of the

effects of varying the end-point on both the starting values

and outer series constants is presented in Table I. For each

of the end-point values, 9 end' listed in the table, a complete

set of tabular profiles were generated and qualitatively com-

pared to determine the degree of matching evidenced. The

results of this process revealed that the smaller the value of

nend' the better was the overall matching of the profiles.

However, for n end < 2.0 no further improvement in the matching

was observed. Also, the boundary conditions at ni were

satisfied to equal degrees of accuracy for each ni end selected.

Therefore, all of the numerical results presented were based

on an end-point value of n end 0 2.0. It was also observed

that the outer profiles were quite insensitive to variations

in the constants C , C , etc,; and that for a fixed E* and
10 11

Sthe parameter Nu(Gr/4)- 1/4 was insensitive to changec in

the initial values which were caused by changing n end'

b. The Inner-Outer Profile Match Point

In addition to the qualitative numerical procedure

outlined above to effect a matching of the inner and outer

profiles, another approach was undertaken based on the appli-

cation of an overall energy balance to the problem under con-

sideration. The principle of conservation of energy requires

that all energy entering a specified control volume must leave

that volume providing there is no storage of energy within the

volume. In the case of the present problem all of the energy
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TABLE I

SUMMARY OF STARTING VALUES AND MATCHING CONSTANTS

end 2.0 3.0 5.0 7.0 10.0

Y"l (0) 10-1 10-9 10-9 0 0

" (0) 10 -  10 0 0 0

Y" (0)1 2.5787 2.8611 3.0893 3.1745 3.2263

Z' (0)1-1.5531 -1.7623 -1.9329 -1.9994 -2.0403

Y"' (0) 10-4 0-4 4 10i 10 5  10 - 0
2 0

Z' (0) 10- 4 'o- 1 lo-5 lo-5 1o-8

Y" (0) -2.5437 -3.3282 -4.0277 -4.3080 -4.48602 1

Z'1 (0) .12905 .21959 .345070 .4034 .44235

Y" (0) 2.15407 2.3655 2.7645 2.9743 3.1229
22

Z'(0) -.96015 -.9905 -1.18464 -1.3222 -1.4087

C 0 0 0 0 0
10

C 1.605 1.636 1.622 1.615 1.6111_ _

D 0 0 0 0 0
20

D 3.2534 4.403 7.022 9.875 14.289

D -2.8477 -2.9755 -2.9811 -2.8945 -2.788
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entering the system at the surface of the plate must exit in

an upward direction parallel to the plate. The mathematical

formulation of this requirement is presented below in integral

form.

-r Yr)dy = q" () d (42)
PO o 0

The left hand integral must be divided into two separate in-

tegrals since there exists an inner and outer region where

the velocity and temperature behavior are described by differ-

ent expansions--the inner and outer profiles. The dividing

line between these two regions must, therefore, define the

match point of the inner and outer profiles. The details of

evaluating the integral equation (42) are presented in

Appendix E. The only quantative result of the energy balance

analysis was that an exact balance could be achieved only if

the matching point between the inner and outer expansions is

taken to be y* = 0. That is the integral in (42) must be

evaluated using the outer series to account for energy leaving

the volume---the left side--and the inner series to account

for the thermal energy entering the volume at the surface of

the plate. As the profiles themselves suggest, the outer

profiles when viewed in an integrated or global sense more

nearly satisfy the energy balance, although in a pointwise sense

they clearly do not, especially at the surface of the plate.

Since behavior at the surface of the plate whether with respect

to heat transfer or shear stress is of primary interest, from
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4,- an engineering standpoint, knowledge of the exact location of

the match point is not essential, since the inner series ex-

pansions are always used to furnish results at the surface.

2. Velocity Profiles

Before analyzing the velocity profiles some method of

characterizing the relative magnitude of the blowing or suction

velocity should be established. To accomplish this v will bew

compared to the maximum value of the u-component of velocity

in the case of unperturbed free convection evaluated at the

location of the discontinuity, x = 0, which will be designated

by U max . The ratio vw/Umax which characterises this comparison

is reduced to the following nondimensional form through

appropriate substitutions:

vw
- 5.124 E*Gr (43)

u max

For a Gr z 108 for which the laminar flow regime is still

applicable the relationship expressed in (43) becomes:

v
w - .0512 e* (44)

umax

From this correlation the blowing and suction parameters used

in the present problem correspond to the following specific

relationships:

* =0.05 implies vw = .00256 umax'

and (45)
* =0.25 implies vw = .0128 uax
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ell-

These values for v are consistent with the original assumption

underlying the governing boundary layer equations.

A careful review of the inner profiles plotted in

Figures 2-13 reveals the following features about velocity be-

havior with suction or blowing:

1) As suction is increased at a specified value

of 3,the location of the maximum u* is drawnL

in closer to the plate and its magnitude is

decreased.

2) At a given value of suction the location of

the maximum u* is moved closer to the plate

and the magnitude of u* is decreased as the

value of X is increased.

3) The results for blowing exhibit the reverse

effects on the location and magnitude of u*

as those described in 1) and 2) for suction.

Numerical data on the effects of suction and blowing on

the location and magnitude of the maximum u* for the inner

velocity profiles as well the corresponding data for the

unperturbed free convection case is presented in Table II.

Comparison of the suction data with the free convection

data reveals that the location of the maximum u* is shifted

closer to the plate and also that its magnitude is reduced by

15% when X=0.25 and by 37% when x=1.0 with a suction mag-

nitude of E* =0.05. When the suction is increased to E*=0.25

the effects are correspondingly amplified. Although this is
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TABLE II

LOCATION OF INNER PROFILE MAXIMUM VELOCITIES

x
.25 .50 1.0

Free Convection:

y* 1.020 1.070 1.15

u* .3088 .3383 .3907
max

Suction e*=0.05

y* .8356 .8221 .7314

u* .2623 .2568 .2444
max

Suction e*=0.25

y* .6868 .6634 .4906
u*.2426 .2194 .1862

max

Blowing e*=-0.05
y* .8929 .9086 .9267

u* .2665 .2717 .2851max

Blowing e*=-0.25

y* .9780 .9951 1.036

u* .2589 .2745 .3333max
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the behavior which would be expected for suction, the percent

reduction in maximum velocity predicted by the inner expansion

is probably too great considering the relative magnitude of

suction applied. In the case of blowing the inner series

fails to produce results consistent with expected physical

behavior since neither the location of the maximum u* is moved

farther from the plate nor is the magnitude of u* increased

above that observed for free convection. Also the degree of

matching between the inner and outer profiles lessens as the

suction magnitude or distance from the discontinuity is

increased.

As indicated above the results obtained in the case

of suction are consistent with the physical situation since

in this case heated fluid is drawn closer to the plate where

viscous forces tend to reduce the maximum velocity in the

streamwise direction. In the case of blowing heated fluid

is pushed farther from the surface away from the influence

of viscous forces and into the region where buoyancy forces

act to accelerate the flow in the streamwise direction there-

by increasing the maximum u*. In addition for a specific

value of either suction or blowing the effects described

above will be accentuated as the distance from the disconti-

nuity is increased; i.e.; for increasing values of L or ,

since the blowing or suction effects will have had a greater

opportunity to predominate over unperturbed free convection.
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The lack of positive correlation in the case of blowing versus

unperturbed free convection might be attributed to any of the

following:

1) Insufficient terms in the inner series expan-

sion; since the signs of the coefficient

functions alternate in a pairwise manner,

addition of another term would possible serve

to effect a better correlation.

2) The effects of blowing become significant in

the region where the inner series no longer

provides a valid representation of the velocity

behavior.

The effects of suction and blowing on the outer velocity

profiles are graphically presented in Figures 2-13; however,

the specific effects on the location and magnitude of the

maximum value of u* are given in Table III using the same

format as Table II for the inner profiles. The results in

the case of suction are somewhat inconsistent with the behavior

expected relative to the free convection case. The location

of the maximum velocity does not move closer to the plate,

and its magnitude does not decrease when compared to the free

convection profiles. This anomaly suggests that the effects

of suction on velocity are more significant in the region

close to the surface of the plate where the behavior is better

approximated by the inner series expansion. Conversely, in

the blowing case the results correlate well with expected
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TABLE III

LOCATION OF OUTER PROFILE MAXIMUM VELOCITIES

X.
_" .25 .50 1.0

Free Convection:

y 1,020 1.070 1.150

u* .3088 .3383 .3907
max

Suction e*=0.05

y* 1.053 1.1588 1.3628

Ua .3110 .3466 .4212Uma x

Suction c*=0.25

y .9386 .9519 1.1072

U* .3117 .3468 .4160
max

Blowing E*=-0.05

y* 1.110 1.240 1.472

U* .312 .350 .433max

Blowing c*=-0.25

y 1.206 1.370 1.617

Ua .317 .364 .466
m4ax
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Figure 2. Suction Velocity Profiles: E* = 0.05, . = 0.25
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Figure 4: Suction Velocity Profiles: e* = 0.05, r-- 1.0
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Figure 5: Suction Velocity Profiles: * = 0.25, - 0.25
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Figure 6: Suction Velocity Profiles: c = 0.25, =0.50
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Figure 7: Suction Velocity Profiles: ec* 0.25, r 1.0
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Figure 8: Blowing Velocity Profiles: em -0.05, = 0.25
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Figure 9: Blowing Velocity Profiles: c* =-0.05, 0.50
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Figure 10: Blowing Velocity Profiles: e* -0.05 = 1.0
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Figure 11: Blowing Velocity Profiles: e* -0.250 = 0.25
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Figure 12: Blowing Velocity Profiles: e* -0.25, x 0.50
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Figure 13: Blowing Velocity Profiles: c* = -0.25, x 1.0
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behavior. Relative to the free convection case the maximum

value of u* moves away from the plate, and its magnitude in-

creases from 1.0% to 10.8%, with a blowing parameter E*=-.05,

as increases from .25 to 1.0. When the blowiag magnitude
L

is E:* = -0.25, the value of u*max increases from 2.7% to 19.2%
x.

as r increases from .25 to 1.0. Whether or not this increase

is excessive must await comparison with experimentally obtained

data. In any case it appears that a very small perturbation

of the momentum boundary layer at the wall, produces relatively

significant changs at increased distances from the plate.

3. Temperature Profiles

The effects of blowing and suction on the temperature

profiles are not as visible in the plots Figures 14-25, as

was the case for velocity since there are no maximum velocity

peaks to observe. However, the same general pattern emerges

as did with the velocity profiles, and key points are summarized

below for the inner temperature profiles:

1) For a given location above the discontinuity the

inner profile pivots clockwise about e = 1.0 as

the magnitude of suction is increased, this re-

presents an increase in the gradient which is

characteristic of an increased heat transfer rate.

2) For giv, i magnitude of suction there is a marked

increase in gradient as the distance from the

discontinuity in the streamwise direction is in-

creased, i.e., the value of 'x increases.

61



1.0

0.8

e
0.4

0.2

0.0 I

Figure 14: Suction Temperature Profiles: e = 0.05, r 0.25
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Figure 15: Suction Temperature Profiles: e = 0.05, L. 0.50
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Figure 16: Suction Temperature Profiles: e* 0.05, 1.0
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Figure 17: Suction Temperature Profiles: c = 0.25, =0.25
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Figure 18: Suction Temperature Profiles: c* 0.25, =0.50
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Figure 19: Suction Temperature Profiles: e* - 0.25, .-- 1.0
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3) Relative to the unperturbed free convection profiles

the effect of suction for a given value of xis to

increase the gradient.

4) For blowing the reverse effects of those outlined

in 1) through 3) above are observed with the addi-

tional feature that the inner profiles are bowed

out as well decreasing their gradient. This be-

havior characterizes a decreased heat transfer

rate.

These observed phenomenon correspond with what physical

intuition suggests should occur. In the case of suction heated

fluid is moved closer to the wall thereby reducing the thick-

ness of the thermal boundary-layer and enhancing the rate of

heat transfer as is evidenced by the increase in gradient. The

opposite situation in which blowing forces heated fluid

farther from the plate causes the thermal boundary-layer to

thicken. This creates an insulating effect which serves to

reduce the rate of heat transfer evidenced by a decrease in

gradient.

The outer temperature profiles again reflect the

distinctive shape of unperturbed free convection profiles.

In the case of suction their behavior is inconsistent and

they do not behave relative to the free convection profiles

as do the inner profiles. This again suggests that the effects

of suction are most evident near the surface of the plate

where the inner series is A closer approximation of the actual
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behavior. For the case of blowing the outer profiles consis-

tently move away from the plate with increases in either

magnitude or distance above the discontinuity. Also, rela-

tive to the free convection profiles, they behave as expectei

moving farther out from the surface as the magnitude of

x
blowing is increased for a specified value of r.This suggests

that the outer profiles are indeed a good approximation of

temperature behavior at large distances from the plate.

4. Heat Transfer at the Surface of the Plate

In order to analyze the effects of discontinuous suc-

tion and blowing on the rate of heat transfer at the plate a

graphical comparison was made of the following three physical

situations:

1) Unperturbed free convection from an isothermal

plate.

2) Free convection from an isothermal plate with

continuous suction or blowing applied over the

entire length. (from the study by Sparrow and

A4 Cess (7] .

3) Free convection from an isothermal plate with

discontinuous suction or blowing applied at a

distance L above the leading edge.

For each of these cases the heat transfer data was correlated

according to following nondimensional parameter:

Nu (Gr/ 4) 4 (46)
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where the Nusselt number in each case Nu , Nu, and Nu was
0 1

evaluated according to length scale associated with the

discontinuity; i.e., L. The three parameters have the follow-

ing form:

1) Nu (Gr/4) -I = - H'(0)(x + 1) -  (47)
0

2)- Nu (Gr/4) -
k = - H' (0) (x + 1)- 1.40E* (48)

1

3) Nu(Gr/4) -i = [H'(0) + (Z' (0) + E*Z' (0)10 11

+ (Z' (0) + C*Z' (0) + E*2Z, (0))E2] (49)
20 21 22

The heat transfer parameters were plotted as functions of x,

x
i.e., U, for suction and blowing magnitudes, E*, of .05 and

.25 in Figures (26)-(29). As expected in the region from the

leading edge, x = L, to the discontinuity at x = 0 the heat

transfer rates for cases 1) and 3) are identical and in case

2) the rate is higher by a fixed amount over the unperturbed

free convection case. At the discontinuity the curve for the

discontinuous case experiences an abrupt change in slope and

intersects the continuous case curve at approximately x =
xL

0.22 for s* = 0.05 and at = 0.52 for e* = 0.25. The magni-L

tude of applied suction apparently has a significant effect

on the location of the crossover point where the discontinuous

heat transfer rate exceeds that for the continuous case. The

behavior of the discontinuous heat transfer rate as X increases

does not appear to approach an asymptotic suction limit charac-

teristic of a constant boundary-layer thickness. However,

since the inner temperature series expansion constructed to

approximate behavior near the surface is only valid in the
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Figure 26: Comparison of Heat Transfer at the Surface of the
Plate with Suction, e* = 0.05.
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neighborhood of the discontinuity, i.e., small values of .

it cannot be expected to accurately predict results in asymp-

totic limiting case as Xbecomes large. The addition of higher

terms to the inner expansion would serve to extend the range

of validity, however, since the Sparrow and Cess analysis of

the continuous case employed only first order terms, it is

reasonable to expect the results of the present analysis to

provide a closer approximation to the physical situation.

This essential difference between the two studies should be

kept in mind when comparing results. The situation with

blowing applied as depicted in Figures (28) and (249) shows the

expected reduction in heat transfer rates when compared to

the unperturbed free convection in both the continuous and

discontinuous caces. At the discontinuity, however, the curve

representing discontinuous blowing exhibits a downward shift

in slope and then follows a path which is basically parallel

to the free convection and continuous blowing curves. The

crossover that occurs in the case of a blowing magnitude of

E= -0.05, is probably an anomaly due to an insufficient

number of terms in both the continuous and discontinuous series

expansions. For a blowing parameter of c* = -0.25 all three

curves appear to asymptotically approach the same slope. A

final judgement as to the degree of accuracy with which the

present analysis models the heat transfer behavior with discon-

tinuous blowingor suction applied must await comparison with

experimental data.
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V. CONCLUSIONS AND RECOMMENDATIONS

An overall review of the results obtained from this analysis

leads to a number of general conclusions. An apparent range of

validity for the expansions can be estimated from a comparison

of the inner and outer profiles presented in Figures 2-25 based

on the degree of correlation between them. In terms of the

streamwise distance from the discontinuity a qualitative upper

bound of = 1.0 is suggested. In terms of the blowing and

suction parameter the relationship given on equation (44) sug-

gests an upper limit of Is*I= 1.0 which equates to a magnitude

of approximately .05 umax for v-w for which the original boundary

layer equations should remain valid. In the case of suction

the inner profiles appeared to model the expected behavior of

the location and magnitude of the maximum velocity with respect

to the unperturbed free convection profiles better than did

the outer profiles. Wher. blowing was applied, the outer pro-

files correlated with anticipated behavior in this respcet

better than the inner profiles. In general. the matching of

the inner and outer velocity profiles improves as the stream-

wise distance from the discontinuity decreases and is also

qualitatively b--er in the blowing cases. The analysis also

indicated that while the inner series provides reasonably good

results at very small distances from the plate, in an overall

integrated sense the outer profiles exhibit a closer correlation
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with the velocity behavior associated with free convection.

The effects of suction and blowing on the temperature

distribution both appear to be well modeled by the inner

series expansions. Again the degree of matching between the

inner and outer profiles significantly improves as the stream-

wise distance from the discontinuity decreases. Also the

effects of the discontinuity on temperature behavior, relative

to the free convection case, are less direct than on velocity

behavior. This difference is evidenced in the manner of coup-

ling exhibited by the ordinary differential equations which

define the inner expansion coefficient functions (see equations

(19) and (20)). This fact in addition to the apparent over-

estimate of velocity magnitudes produced by the outer series;

the underestimate by the inner series; and the heat transfer

behavior predicted for small suction magnitudes suggest that

additional higher order terms be added to both inner and outer

expansions to achieve a better approximation of the physical

situation. In general the results obtained for the effects

of discontinuous suction or blowing on heat transfer at the

surface of the plate seemed consistent with the results for

unperturbed free convection and the case of continuous suction

or blowing applied over the entire plate length. Comparison

with experimental data when it becomes available will enable

a more definitive conclusion to be made regarding the validity

of this solution with respect to heat transfer performance.
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Also, with the addition of higher order terms to the

inner series it would be possible to determine if the heat

transfer results predicted by the present analysis tend to

xapproach the asymptotic limits for large values of Ees-

tablished by Merkin [9]. In that study the following

asymptotic limits for continuous suction and blowing at

large distance from the leading edge were reported, given

below in terms of the parameters used in this analysis:

1) For suction Gr/( 4e*P as
G r) 0 E P as co2) For blowing Gr/(T L s -

The asymptotic limit in the case of suction is represented

by the dashed line in Figures (26) and (27).

Although an exact determination of the inner-outer series

match point is not essential when the primary interest of

the investigation is to predict behavior at the surface of

the plate, a more rigorous determination of that point would

serve to enhance the overall creditability of the present

method of solution. Therefore, another recommendation to

improve the method point is to use the energy balance

integral given in (42) to form an energy difference, i.e.,

from a difference integral by substracting the right side

from the left side. A numerical minimization procedure

could then be applied to this difference to determine the

match point which most closely satisfies the energy balance.
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APPENDIX A

CONSTRUCTION OF THE FREE CONVECTION MATCHING SERIES

The equations which define the behavior of the free con-

vection velocity and temperature profiles were presented in

equations(9a) and (9b), with appropriate boundary conditions,

in terms of similarity functions F and H which characterize

the stream function and temperature distribution respectively.

In the region near the surface of the plate, y* = 0, and at

the location of the discontinuity, x = 0, these functions can

be approximated by suitable series expansions in powers of

y* as follows:

F(y*) = E aj(y*) j  (A-1)
j=o

H(y*) = 1 + Z b (y*)J (A-2)
j=l J

where the variable y* can be used since it is identically

equal to the free convection similarity variable at x = 0.

The constant coefficients in (A-i) and (A-2) can be

determined from applying the following previously enumerated

boundary conditions:

At y* = 0: F(0) = 0

F'(0) = 0

H(O) = 1
(A-3)

As y* : F'(o) = 0

H(-) = 0
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These conditions immediately yield the result that a= = 0.
0 1

By evaluating the series representations for F" and H' the

constants a and b are specified as:2 1

a = F"(0) and b = H'(0)
2 1

where both of these initial values are well known and depend

only the Prandtl number.

To evaluate the higher order coefficients the form for

F''' must be obtained from equation (9a):

2
F''' = - 3FF" + 2F' - H

which when evaluated at y* = 0 yields F'''(0) 1 and

equating this value to the series form of F''' yields:

1

A similar technique is used in determining b from equation2

(9b) and the following value is obtained:

b = 0
2

The remainder of the coefficients are found by successively

differentiating equations (9a) and (9b) and equating them to

the appropriate series representation evaluated at y* = 0.

The results of this process are summarized below:

a =0 b = H'(O)
0 1

a =0 b =0
1 2

(A-4)
a = F"(0) b = 0
2 3

a = - 1/6 b -PrF"(0) HI'(0)
3 8
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a -H' (0)
4 24

120

These series forms for F and H will be used to satisfy the

matching conditions for both the inner and outer expansions

later in the course of the analysis.
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APPENDIX B

DETERMINATION OF THE STREAM FUNCTION AND TEMPERATURE DISTRI-

BUTION SERIES EXPANSION PARAMETERS

Recalling that the definitions of the stream function and

temperature profile series expansions involved certain arbi-

trary constants, the methods and procedures used in evaluating

them are outlined in this appendix.

I

1 *( /P)a + 0 c[Ekff(n)] (B-l)
1 L dffkgkl))

e 1 + Edk(B-2)

where
xa

I X and 2= y*xb (B-3)
1 2

The object of constructing such expansions for the stream

function and temperature distribution is to obtain series re-

presentations which satisfy the momentum and energy equations

which mathematically model the physical problem. The indivi-

dual components of those governing equations (6) and (7), i.e.,

the partial derivatives, must be evaluated in terms of

expressions (B-l) through (B-3). Substituting (B-l) and (B-2)

into the momentum and energy equations yields:

Momentum Equation

l-2b 2b-1

1a 2 2c + a {[a(c + k) + b)Ek fll[ kf?]
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2b C+2b

[a(c + k) kfkikfl 4e*€ a 2 E a [Ekfi]

3b 3b

= a a [kfk,,] 1 [ (B-4)
2 3 k4 g

Energy Equation

1-b b-i
40 a ¢ 2 0 3 a {[a(d + k) kg H]kf]

kb b+ d
- [a(c + k) kfkl[k gl]} - 4*p a ka [kg

2b 2-b 2 4 k
1 a a kg,

=2 a [kg ] (B-5)

Certain conditions which must be satisfied will impose

restrictions on the allowable values for the f's and constants

a, b, c and d. The one condition which must be satisfied by

the equations is the initial velocity and temperature matching

at a distance L from the leading edge of the plate where the

discontinuity in normal velocity begins. At this location the

perturbed velocity and temperature profiles must match the

free convection profiles. In terms of the stream function the

velocity is given by:

ca ac ka ka

u* c G- (Y) [ a (y--) b f,] (B-6)
ay 1 2 312k

The free convection velocity profile written in terms of u*

can be expressed as follows:

u*= F'[y*j = E ja (y,)j-1 (B-7)

j=2 8
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Equating the leading term in each series (B-6) and (B-7) i.e.,

when j=2 and k=O we obtain the following relationship:
ca ac2a y @c'6-- ( )' -if,

2 *= o o - (B-8)
2 1 2 3

For proper matching, the exponents of y* must be equal; therefore,

ac-_ 1 = I (B-9)

Also, since it is desirable to have expressions which are in-

dependent of e* for the boundary conditions on the fk as

the following condition will be imposed:
ca

c -B - = 1 (B-10)
12Z 3

The requirements for matching the temperature profiles yields:

ad ka ka
" 4h (ri)k sJ = y" (B-l)

Applying similar arguments to those used for the condition of

velocity matching, the following relationships are obtained

from (B-il):

ad (B-12)

and

d = (B-13)
1 2 4

For additional restrictions on the exponent constants consider

equation (B-4) in which the highest order derivative term must

appear in the Oth order expansion in order to obtaine meaningful

results. This requirement imposes the following condition on

the exponents of :

c + lb < 2c + 2b-1
a -a
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or equivalently,

ac _ b + 1 (B-14)

The same restriction also applies to the energy expansion,

equation (B-S) and the same relationship is obtained (B-14).

Since fractional exponents on are not permissable, due to

the inability to match coefficients of like of powers of E in

both expansions, from equation (B-12) the following further

information is obtained:

d = 1 (B-15)

and

aF -= 1 (B-16)

Now combining (B-9) and (B-16), the constant c is specified

as:

c = 2 (B-17)

Using this information and the relationship given in (B-14)

imposes the following restrictions on the possible values of

a and b:

a > 1/3 and b < - 1/3 (B-18)

The relationships previously obtained for the 4's can be sim-

plified by substituting the known values for the exponents in

equations (B-10) and (B-13) from which are obtained the

following:

02 = 1 (B-19)
1 2 3

and

=. q 1(B-20)
1 24
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Since equation (B-5) is homogeneous in 4 and c appears only

singly in equation (B-4), without loss of generality it can

be set equal to unity. Setting 4 = 1 in equations (B-19) and

(b-20) yields the following further relationships for the c's:

S= 1 (B-21)
1 2

and

1= (B-22)

3

The foregoing analysis has permitted the reformulation of

equations (B-4) and (B-5) in terms of only two unspecified

parameters a and )p and those equations reduce to the follow-

ing forms:
Momntm:4a a a{[k + 1)E kf'] [ kf.] - [(k + 2)Ek fk]•Momentum:4a i ) i:~ '

k k k gk
[ kfj ]} - 4e, [gkf ] = [ k , + $~kk (B-23)

3-1 k k
Energy: 4a1 a a{[(k + 1 fgk[ - [(k + 2)kf k ]

k ] = -(kgk] (B-24)

Equation (B-18) allows for only two reasonable choices for

the value of a; namely, a = 1/3 or a = 1/2. Furthermore, for

each of these two values 0 can be defined to either include

C* or not; thereby posing four possible cases for consideration.

The-cases which specify a = 1/2 do not satisfy the boundary

condition for f as n--; and therefore, are unacceptable for

the present problem. The case for which E* is included in

and a - 1/3 results in a set of ordinary differential equations
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which include e* in the homogeneous part and which cannot be

transformed into general equations independent of e* through

the use of universal functions. Therefore, the case with

a = 1/3 and e* not included in the definition of , was

selected to complete the solution of the problem. A summary

of the results is presented below:

a = 1/3, b - 1/3, c=2, d =1 (B-25)
1/3 3- 1/34)1/ = - 1 = = 1 (B-26)

3 1/3 3 - 1/3 B
= (Tx) ,n=(Tx) y y /  (B-27)

= *,3 + k2[ f (B-28)

0 = 1 + [k gk] (B-29)

The momentum and energy expansions which result from these

definitions were presented in Chapter II, equations (17)

and (18). All that remains is to specify the appropriate

boundary conditions for the fk and gk"

At f 0: u* -L _[Ekfq] = 0 (B-30)Dy*

v'* .[E* + -1 [(k+2) kf}k = -*, (B-31)

and

1 = + k : i (B-32)

From these original boundary conditions, the local boundary

conditions for fk and f are determined to be:

f(k(O) TO) =gk(O) = 0, for all k (B-33)

The boundary conditions at n-- are obtained through matching

the velocity and temperature profiles to the free convection
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profiles. The velocity match is performed by equating equations

(B-6) and (B-7) with the appropriate values substituted for the

unspecified parameters. The result of this process is the

following relationship:

jz2 ja (yk)j- (B-34)
2 n

By equating like powers of y* and substituting the values for

the a. obtained in Appendix A the following local boundary con-J

ditions for the f' as n-- are determined:

f,

0 = 2a F"(0) as nr-
1I 2

f,1
1 = 3a s asnr-2 3 2

n (B-35)

2 = 4a - ' as n-o
3 6

f, [I,,(0) ]3 = Sa -[4- as n--
S 5 24

The temperature profile matching yields the following local

boundary conditions for the

a g
0 = b = Hf'(0) as n-o

g
= b = 0 as -co

2

(B-36)

-- b =0 as n-o
n3 3

g= b = PrF"(0)H'(0) n-=
74

-  b 4 a s o
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APPENDIX C

THIRD ORDER UNIVERSAL FUNCTION EQUATIONS

The third order ordinary differential equations which

result from the expansions given in (17) and (18) are pre-

sented below, although only functions of second order

and lower were employed in the actual analysis:

f? + 2f f" - Sf' f + Sf'f = 5flf' 3f'f" - 4f"f
3 0 3 0 3 0 3 1 2 1 2 1 2

- 4c*ff" g (C-1)
2 1

i g" + 2f g' 4f'g + 5g'f g f' 2g f' + 3g f'
Pr 3 0 3 0 3 0 3 03 3 2 1

3f g'- 4f g' E4:*g' (C-2)
1 2 21

The corresponding forms for f and g in terms of the univer-
3 3

sal functions and the resulting differential equations are as

follows:

E f = y + :y ,. (C-3a)
3 30 31 32 33

and

g = + *Z + + *3Z (C-3b)3 30 3 32 33

The third order momentum equation becomes:

M [Y ] SY' Y' - 3Y Y" - 4Y" Y - Z (C-4a)
3 30 10 20 10 20 10 20 10

M [Y ] = SY' Y' + SYY'Y - 3Y Y" 3Y Y"
3 31 11 20 10 21 10 21 1 1 20
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4Y" Y -4Y" Y" Z;(C -4b)
1 0 2 1 1 1 2 0 1 1

\[Y ]= Y' Y' + 5Y' Y" - (Y Y"
3 3 2 1 0 2 2 1 1 2]1 1 0 2 2 1 1 2 1

- 4Y" Y -4Y"P Y - 4Y" ; (C-4c)
1 0 2 2 1 1 2 1 2 1

M [Y ]=5Y' Y' -3Y Y" - 4Y" Y - 4Y"I (C -4d)
3 33 11 22 11 22 11 22 22

where the linear differential operator M is defined by:

M = Y"' + 2f Y" - 5f'y' + Sf"y (C-4e)
3 3 0 3 0Y3 03

The third order energy equation becomes:

E (Z ] = 2Z Y' + 3Z Y' - 3Y Z' - 4Y Z' ; (C-5a)
3 30 10 20 20 10 10 20 20 10

E [Z ] = 2Z Y" + 2Z Y' + 3Z Y" + 3Z Y'
3 31 10 21 11 20 20 11 21 10

- 3Y Z' - 3Y Z' 4Y Z' - 4Y Z' - 41' ;(C-5b)
10 21 11 20 20 II 21 10 20

E [Z ] = 2Z Y' + 2Z Y' + 3Z Y' + 3Z Y'
3 32 10 22 11 21 21 11 22 10

- 3Y Z' - 3Y Z' 4Y Z' - 4Y Z' - 4Z' ; (C-Sc)
10 22 11 21 21 11 22 10 21

E [Z ] = 2Z Y'. + 3Z Y' - 3Y Z' - 4Y Z' - 4Z'
3 33 11 22 22 11 11 22 22 11 22 Sd)

where the linear differential operator E is defined by:

E =-Z + 2f Z' - 4f'Z + 5Z' Y - Z Y' (C-5e)
3 Pr 3 0 3 0 3 00 3 00 3

The boundary conditions for these equations are:

at = 0: Y = Y = Y = Y = 0;
30 31 32 33

Y' = Y' ' = Y' = 0 ; (C-6)
30 31 32 33

and
Z = Z = Z Z =0;

30 31 32 33
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~y,

and as n-: 3o 0 [F"(O)] 2  0; Y'
T- 4 24 31 32 3324

(C-7)
Z 3 -P r F ' ( 0 ) H '1 ( 0 ) ; Z0 ; 7; Z0

and -___O)'( ; Z *0;Z +O;Z - 0
n 4 8 31 32 33

which follow from the coefficient function boundary conditions

given in equations (B-33), (B-35) and (B-36).
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APPENDIX D

DETERMINATION OF THE OUTER SERIES COEFFICIENTS

The process of determining the coefficient functions of

the outer series expansions defined in equations (29) and

(30) involves the solution of the ordinary linear differential

equations (32); the evaluation of the resulting constants of

integration; and the solution of the algebraic equations (33).

The procedure is greatly simplified if the outer expansions

for p and e are first transformed into series with coefficients

which are powers series in y*, the coefficients of which are

derived from the asymptotic forms of the f and g This tech-

nique will facilitate the evaluation of the constants of in-

tegration significantly reduce the complexity of equations

(39).

The asymptotic forms of the inner series coefficients can

be written as polynomial in n with as yet undetermined

coefficients as follows:

f = a n2  (D-la)2 2

f = A n3  + B n2 + C n + D (D-lb)
1 1 1 1 1

f = A n' + B n 3 + C n2 + D n + E (D-lc)
2 2 2 2 2

2

9 M b n (D-ld)

S Ig = B*n + C* (D-le)

g = B*n + C*T + D (D-If)
2 2 2
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which must satisfy the asymptotic boundary conditions specified

in (B-35) and (B-36). The constants are evaluated by substi-

tuting the equations (D-l) into the original differential

equations (19) and (20) and then solving the algebraic equa-

tions which appear as coefficients of like power of n. The

results of this process are summarized below:

A = -1 A = -b1  B* = 0
6 2 24 1

B = 0 B = 0 C* bC 1  (D-2)
1 1 1 2a2

C = TBD C CI B* = 01 2 
' -

2

D = -4_ E* D = TBD C* = -b1C1
1 3 2 2 8a2

2

E .C-i D* -bD
2 4a 2 6a2

where a = F"(O), b = H'(0) and C and D to be determined
2 2 1 1 2

from application of the matching condition. This process

will be outlined at the end of this appendix.

Now the equations (D-1) with the coefficients as defined

in (D-2) can be substituted into stream function (lSa) and

temperature distribution (15b). Then if the definition of

n = y*/E is invoked and all coefficients of like powers of E

grouped together, the following expansions are obtained which

are valid as y* becomes large:

a ay* 2 1 ,y*3 b L  + [02 [aY 6 Y 24 - []

+ [C1y - ay *2]E 2 + [DyA] E3  (D-3)
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and 0 = [1 + b y*] + [0]& + [-L -1 1 y Y 2
2 8a 2

2

+ _ D1--- 3  (D-4)L6a2
With these equations in hand the final determination of the

outer series coefficients can now proceed.

The first of the differential equations defined in (32a)

is logarithmic and its solution has the form:

= K t' (D-S)

Since p is the coefficient of the linear term in the outer
1

expansion and that coefficient in (D-3) is zero, K must also

equal zero, and has the final form:

11S0 (D-6)

Using this equation in (D-2b) reduces it to logarithmic form

with solution for as before:
2

K t' (D-7)
2 2 0

where K is evaluated by equating (D-7) with the appropriate
2

form of the &2 coefficient in (D-3). The final result for

then becomes:
2 C

= I ' I (D-8)
2 2a 0

2

The last of the differential equations (32c) can be expressed

in a simpler form using (D-6); however, its solution requires

a different technique. The reduced form for (32c) is:

1 = + + ' (D-9)T 0 3 2 30 0 0
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Using the free convection stream function equation (9a) 4"'
0

can be written as:

'"= - 3 P" + -- (D-10)

0 0 0 0 0

and by suitable algebraic manipulations in combining (D-9)

and (D-10) the, following differential form is obtained:

( )- 6Q4)l 2 (D-11)

Straight forward integration yields the following general

solution for ' :
3

P= 6 - 2y*' + K' (D-12)
3 0 0 3 0

where K is obtained as before with the aid of equation (D-3).
3

Thus the particular solution ' has the following form:
D 3

6 =60 2*0 2a 0 (D-13)
3 0 0 2

2

This completes the determination of the outer expansions

for 'p and 0 with the exception of the constants C and D
1 2

Since these constants appeared originally in the asmyptotic

forms of f and f and are determined from the matching of the
1 2

inner and outer series, the results of equating the universal

function forms to the asmyptotic forms will yield expressions

for C and D . The following equations result from this
1 2

process:

For =-r + C rl 4* = Y + *Y (D-14)
1 1 0 10 11

and for f : n' - CL n 2 + D n +  I =

2 24 0 4a 0 2 0 4a
2 2

y2 + *21 + C*2y (D-IS)
20 21 22
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Solving for C from (D-14) yields the following:
1

C -C + E*C (D-16)
1 10 11

where
Y

C (_ + 2
10 -

and
Y

11

A similar procedure yields the following form for D obtained
2

from (D-15):

D =D 2+ *D + E*2D (D-17)
2 20 21 22

where
Y b C C2

2O

2 2

Y C C C

11 1 0~
D 21 =(,.I._ + ._ r{ 2a 7n )

2 2

and
y C2

D = ( 22 - _11 )
22 Ti n Tah

2

where the value n was taken as n end the chosen end point of

numerical integration. This completes the derivation of the

outer series expansions, except to note that the constants

C , C , D , D , and D are evluated numerically from the
10 11 20 21 22

tabulated universal functions.
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APPENDIX E

INTEGRAL ENERGY BALANCE ANALYSIS

In only heat transfer problem an overall thermodynamic

energy balance must be satisfied. For the case of the present

problem the integral energy balance takes the following form:

f- 0) ipdT = f3+Lg,, (3)di (E-1)

The left hand side reduces to the following form with non-

dimensional integrand:

4c pV(Y - Gr )(-)1/4 f u*dy* (E-2)
p w 00T0

Since there are two distinct regions over which this integral

is defined, it must be split into two integrals separated by

the point, y* where the inner and outer expansions shouldedge'

match. Substituting the appropriate forms for u* and 6 as

defined by the inner and outer series the integral (E-2) can

be written as the sum of the following two integrals:

Inner region y* = 0 to y* = y,

4c Vp(T -T )( --- )1/4 fY{f'(n)E + [f'(n)g (n) + f'(n)]E 2

p 00 4 0 0 0 0

+ [f'(n)g (n) + go (n)f'(n) + f'(n)]E 3 } dy* (E-3a)
0 1 2

where Y is the matching point,

= L., and dy* = Edn which transforms (D-3a) into the

following:

4c vcr 1 )Gr) 1/4 y,, ff?EZ +' (fjg + f,]& 3
+

4Cp P(T -7 )41) 1
p 0 0 0 00
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[f'g' + g f' + f'W]&}dri (E-3b)

where y depends on x.

For the outer region, y* = y to y* =, the following integral

applies:

4c pV(Y _)( r)4 0{F'H + L (F'H' + FH)
p w 4 y4a

2

+ 2- 2y*) + F 'H + 2 - 2y*)F"H]C 3 }dy* (E-4)
2 2

The right hand integral in (E-l) also must be divided into

two distinct regions, the first extending from the leading

edge to the discontinuity and the second from the discontinuity

to any arbitrary location above it. The following two inte-

grals are obained:

+ Lq"d3F+ q" dx (E-5)
0 F P

where qF is the heat flux in the undisturbed free convection

region of the plate and q" is the heat flux above the discon-
p

tinuity, both evaluated at the surface of the plate. Upon

making suitable substitutions to non-dimensionalize the in-
tegrands, the following result is obtained from (D-4):

4k- 1 ( ) + 4

+ 9 (E-6)~*g2 5]

where Gr is evaluated at L and the g are evaluated at the

surface of the plate,n = 0.

After completing the indicated integrations in (E-3a) and

(E-3b) and equating coefficients of like powers of the

following relationships are obtained:
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H' (0) -H'(y) = 3PrF(y)H(y) (E-7)

C 2 F'(y)H(y) F"(0)]2y2 (E-8)1

.FI (0) H()( ) + f ) F(y)H(y) -(

E 3Pr

D2 1

Ma FI (y)H(y) + 3yF'(y)H(y) = - ' (0) (E-9)
2

The relationships can be identically satisfied only at the

surface of the plate, n = 0. From this fact it can be concluded

that the outer profiles are the better approximation of global

behavior and will satisfy the energy balance in an integrated

sense, pointwise local behavior is required near the surface

of the plate the inner expansions should be used, although

theycannot satisfy the integral energy balance.
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